

Bachelor’s thesis

Framework for Proof of Concept
Implementations of C&C Channels

Marek Timr

May 2015

Supervisor: Mgr. Jan Kohout

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Computer

Science

Acknowledgement
I would like to thank my supervisor Jan Kohout for supporting me and my work
and for providing advice and insight into the subject matter.

v

Prohlášení
Prohlašuji, že jsem předloženou práci vypracoval samostatně, a že jsem uvedl
veškeré použité informační zdroje v souladu s Metodickým pokynem o dodržování
etických principů při přípravě vysokoškolských závěrečných prací.

V Praze dne
Podpis autora práce

vii

Abstrakt
Botnet je síť kompromitovaných počítačů, které jsou vzdáleně ovládané skupi-
nou hackerů. V poslední době se stávají velmi vážnou hrozbou pro internet. Tyto
sítě jsou vytvořené k provádění rozsáhlých nelegálních aktivit zahrnujících krádež
citlivých dat a útoků na soukromé i veřejné služby. Klíčovou součástí botnetu
je Command and Control (C&C) kanál, který útočníci používají k zadávání pří-
kazů botům and sbírání dat. V naší práci prezentujeme framework navržený pro
testování implementací komunikačních protokolů. Zaměřili jsme se na myšlenku
zneužití běžně používané internetové služby ke skrytí C&C centra botnetu. Komu-
nikace takového botnetu se tak ukryje v běžném síťovém provozu. Ukážeme naší
implementaci meta-protokolu komunikace s několika službami jako je například
Twitter či Dropbox a rozebereme možnost jejich zneužití.

Klíčová slova
botnet, Command and Control, Command and Control simulace

Abstract
A botnet is a network of compromised computers which are remotely operated by
a group of hackers. They have become a serious threat to the Internet recently.
These network are created to conduct large-scale illegal activities including steal-
ing of sensitive information and attacks on private and public services. Crucial
part of botnet is Command and Control (C&C) channel that is used by attackers
to issue commands to bots and collect data. In our work we present a framework
designed to test implementations of communication protocols. We focused on the
idea of abusing commonly used Internet service to hide C&C center of botnet.
Communication of such botnet is hidden in regular network traffic. We will show
our implementations of communication meta-protocols with some services such
as Twitter or Dropbox and analyse possibilities of their abuse.

Keywords
botnet, Command and Control, Command and Control simulation

ix

Contents

1 Introduction 1
1.1 Motivation . 1

2 Botnet structure 3
2.1 C&C protocol . 3
2.2 Usage . 3

Spam . 3
DDoS attacks . 3
Identity theft and sensitive data stealing 3
Click fraud . 4

2.3 Topology . 4
2.3.1 Centralized . 4

IRC . 4
HTTP . 5

2.3.2 Decentralized . 5
Peer-to-peer . 6

3 Examples of Botnets 7
3.1 Koobface . 7

C&C channel . 8
3.2 Gameover ZeuS . 8

P2P architecture . 9
Message structure . 9

3.3 Stegobot . 10
C&C channel . 10
Effectiveness . 11

4 Framework implementation 13
4.1 C&C channel . 13
4.2 Design of framework . 13

4.2.1 Flow of the framework . 14
4.2.2 List of orders . 15
4.2.3 Configuration file . 15

4.3 Behaviors . 16
4.4 Drivers . 16

4.4.1 OAuth . 16
4.5 Dropbox . 18

4.5.1 Proposed channel . 18
4.5.2 Limitations . 18
4.5.3 Setup . 20
4.5.4 Summary . 20

4.6 Pastebin . 20
4.6.1 Proposed channel . 21

xi

4.6.2 Limitations . 21
4.6.3 Setup . 21
4.6.4 Summary . 22

4.7 Twitter . 22
4.7.1 Proposed channel . 23
4.7.2 Limitations . 23
4.7.3 Setup . 23
4.7.4 Summary . 24

4.8 Google Spreadsheet . 24
4.8.1 Channel design . 24
4.8.2 Limitations . 25
4.8.3 Setup . 25
4.8.4 Summary . 25

4.9 Hybrid channel . 26
4.9.1 Channel design . 26

Commanding orders . 26
Responding to C&C . 27

4.9.2 Limitations . 27
4.9.3 Setup . 27
4.9.4 Summary . 28

4.10 Comparison of channels . 28
4.11 Drop off server . 29
4.12 Extension of framework . 29

5 Conclusion 31

Appendices

A Content of CD 32

Bibliography 33

xii

1 Introduction
Botnet is a network of private computers that were infected by malicious software
in order to control them. Bot, which is short for robot, is a software application
or script performing malicious activity. The infected computer is called zombie.
The network is controlled by one or more attackers who are called botmasters.
Bots allow botmaster to control zombie and perform a whole range of criminal
activities.[1]

Botnet can spread over thousands of machines. The largest recorded controlled
millions of victims. Unlike regular malicious software like viruses or Trojans, the
main power of bot is its ability to cooperate with others. The crucial part of a
botnet is Command and Control (C&C) channel. Botmaster uses this channel to
issue commands to bots and harvest stolen information gathered by bots. Botnets
employ different strategies how to establish robust C&C channel since it’s the
weakest part of it. Disruption of C&C takes down the whole botnet. Therefore
the communication is often covert and encrypted to prevent interference with
botnet. Also topologies of networks made by bots are various as we will see in
the following chapter.

1.1 Motivation
Bots may use its own protocol for communication but also make use of common
protocols. Recently, botnets tend to use HTTP for their communication. HTTP
is massively used on the Internet and has a few significant advantages. Unlike for
example formerly popular Internet Relay Chat (IRC) protocol, HTTP communi-
cation cannot be easily blocked by firewalls. HTTP overcomes port filtering. The
next advantage is the ability to hide in regular traffic.

Botnet contains one or more C&C servers which are operated by botmasters.
In our work we focus on the idea of hiding C&C communication into a usage of
regular Internet service. Bot will connect to a commonly used social network or
similar popular service to communicate with the botmaster. This approach has
inherently the same advantages as HTTP botnets but adds a few more. Bots
connect to well known servers which cannot be shut down, blacklisted or blocked.
Communication is transferred encrypted by HTTP over TLS, HTTPS for short.
Meaning that we cannot perform deep packet inspection of captured traffic. We
only know the destination and size of the packet but we are missing request part
and payload. This communication is blended in with regular traffic made by user
of the infected computer. This principle is called hiding in plain sight.

We were inspired by the idea of bot abusing certain Google Services [2] to test
vulnerabilities of some commonly used services. For that purpose we created a

1

1 Introduction

framework called CCCBot which simulates C&C communication between a bot
and C&C center located on a service. Besides studying possible abuse of selected
Internet services, the framework will be a source of valuable data. It is hard to
obtain real captured traffic of a botnet. Data created by our framework can be
used for learning of a botnet detection software.

2

2 Botnet structure
In this chapter we will describe what possible malicious activities botnets are
capable of carrying. Also we will study different botnet topologies.

2.1 C&C protocol
C&C communication protocol is a set of rules for exchanging information between
bot and botmaster. Protocol determines the medium over which is information
transferred and establishes data representation of messages and their meaning.
Creator of botnet equips bots with sets of actions which they are capable of.
Protocol must allow botmaster to issue orders to execute these actions. Protocol
also handles distribution of messages across the network of bots in case of complex
hierarchy. [3]

2.2 Usage
Botnets are used in a wide variety of malicious activities, usually generating finan-
cial profit for attackers. Botmasters can also conduct serious damaging attacks.
Following list classifies common usage of botnets as stated in this paper[4].

Spam

Spamming is a very common use of botnets. About 70% to 90% of the world’s
spam is caused by botnets nowadays [4]. The statistics[5] show that a single
botnet can produce 40 billion emails per day. In this case done by botnet called
Grum. Similarly these botnets can be used to spread various malware.

DDoS attacks

Distributed denial-of-service attacks are attempts to make a service or network
resource unavailable for intended users. There are several methods of attack
exploiting various characteristics of communication protocols. Common method
of attack is based on flooding service with enormous amount of requests, which
the target cannot handle. It is quite difficult to come up with a countermeasure.
The traffic cannot be simply filtered because it comes from various locations.

Identity theft and sensitive data stealing

Botnets are used in phishing attempts to obtain confidential information. For
instance, botnet can create spam directing users to fake websites imitating real

3

2 Botnet structure

ones. The victim is prompted to log in or has to input some personal information.
This is commonly used to steal bank accounts. Botnets may sniff traffic passing
by victim’s machine or act like keyloggers collecting passwords for accounts of the
user.

Other uses include instant messaging attacks. Bot steals victim’s IM accounts
and spreads messages that look legitimate. Their purpose is to lure others to
phishing websites in order to download some malware. The bot is profiting from
the fact that users trust the account that they know.

Click fraud

Botnets make use of unique IP of host for creating clicks on Internet ads. When-
ever someone clicks on an ad, the advertiser pays the website owner some amount
of money. Perpetrator may set up a botnet to periodically click on certain ads.
Since the IP addresses of infected hosts are scattered around the world, the clicks
seem valid. This damages payers of the advertisement. The attacker can also use
automated clicks to affect polls or games.

2.3 Topology
C&C channels may be classified according to the arrangement of network. The
main categories are centralized and decentralized. There are also hybrid combi-
nations of those[1].

2.3.1 Centralized
Centralized topology is similar to client-server network model. Each bot connects
to one, or a few, C&C servers. This design is easy to implement and comes with
some benefits. Centralized botnets have quick reaction times and controllers are
able to easily monitor the status of botnet. This provides them with information
about number of active individuals and their distribution. Centralized topology
suffers from a significant drawback. Failure of C&C center is failure of the whole
botnet. Therefore attackers may insert an additional proxy layer of computers
between workers and C&C server. Centralized botnets commonly use protocols
as IRC[5]and HTTP.

IRC

Internet Relay Chat is protocol for sending text based messages. Users need
a client that connects to a chat server. The communication is grouped into
discussion forums, called channels. Botmaster creates a channel and broadcast
messages there. Bots read them and report in this channel directly back to C&C
server. This C&C channel is push-based. That means that bots are notified
about a new order and do not have to poll for new commands. Managing bots
into groups allows the botmaster to issue different commands to parts of botnet.

4

2.3 Topology

Figure 1 Peer-to-peer architecture with workers hidden behind firewalls

IRC was very popular among its users and also creators of botnets. A great
amount of botnets utilizes IRC protocol but they are gradually replaced by HTTP-
based botnets. Popularity of IRC continuously decreases in recent years. Usage
of IRC is not very common in corporate networks. Communicating through IRC
may not be permitted in these networks. However HTTP is usually allowed and
gives botnet opportunity to hide in regular communication.

IRC protocol is mainly plain text. Therefore traffic can be collected and sim-
ply analyzed. IRC based botnets came with various strategies how to remain
undetected. They may send obfuscated messages or use their own dialect. There
are some options how to encrypt communication. Some IRC servers support
SSL/TLS.

HTTP

HTTP-based botnets[6] act oppositely to IRC botnets. HTTP C&C channels are
pull-based. Bot has to poll C&C server periodically to acquire new orders. As
was said, it is not easy to block HTTP in networks. Normal application installed
on computers may generate periodical activity which may trigger false positive
detection of botnet. These applications may be email clients updating mailboxes,
auto-updaters or other software synchronizing with server. This gives HTTP
based botnets the advantage to hide.

2.3.2 Decentralized

Decentralized C&C is an attribute of modern botnets providing them with the
ability to handle large numbers of bots. Decentralized topology is more flexible
and robust[7]. Bots do not establish communication with one point, thus making
uncovering botnet harder. Even if a significant part is revealed, taking down
botnet is hard. Attacker can spread orders to bots from almost any part of
botnet.

5

2 Botnet structure

Peer-to-peer

Decentralized architecture is based on some kind of Peer-to-peer (P2P) overlay.
Peer-to-peer based botnets are more resilient and harder to detect. Each bot in
network can be peer or a worker. Peers are nodes that are connected to other peers
and spread commands to workers. It depends on botnet topology and strategy
how peer nodes are chosen and distributed in network and also on how the orders
are distributed in the network.

Not every infected machine can be peer. If the computer is behind a firewall
or its address is translated by NAT, that machine cannot be reachable by IP
address. The computer may also access internet through a proxy. The figure
Fig. 1 shows an example of peer-to-peer network. Workers are shared by different
peers, allowing them to be assigned to a different peer in case the used one is taken
down. Peers also serve the purpose of proxy. Worker communicating with a peer
does not reveal true C&C server issuing commands. That also works both ways.
Botmaster issues a command only to one peer, which distributes it to others.

6

3 Examples of Botnets
In this section we will present different examples of botnets and their C&C chan-
nels. We chose three botnets, each with contrasting architecture or an interesting
C&C channel.

3.1 Koobface
Koobface [8] is very successful botnet first detected at the end of 2008. It targeted
messaging networks like GMail, Skype, Yahoo Messenger and social networks like
Facebook, Twitter or MySpace. Koobface was operable for long time despite
numerous attempts to take it down till 2012 when the gang of five hackers was
identified and arrested. Koobface mainly generated profit through pay-per-click
and traffic referral schemes earning millions of dollars for attackers.

Koobface used social engineering to spread. Infected computer sends bogus
messages using hijacked accounts of the victim to his friends. Such message could
contain an invitation to see a video and a link. Hijacking social trust, the victim
was unaware that he is redirected to a phishing page with the name YuoTube,
instead of YouTube. User is prompted to download Adobe Flash Player in order
to see the video. Running the downloaded file infects the victim’s computer.

Downloaded file didn’t contain the actual Koobface malware. The program
scanned the computer to identify which social networks the victim uses and con-
tacted C&C to download appropriate components. Koobface consisted of these
parts:

∙ Koobface downloader
∙ Social network propagation components
∙ Web server component
∙ Ads pusher and rogue antivirus
∙ Captcha breaker
∙ Data stealer
∙ Web search hijacker
∙ Rogue Domain Name System changer
Components serve various purposes. Social network propagation component is

responsible for spreading the infection. It steals victim’s account by inspecting
saved cookies of a web browser and starts sending messages to victim’s friends with
links to malware loader. This component can also harvest sensitive information
about the victim. These data are scraped from social network profiles. Loader
even upload photos of the victim, so that it could be used for blackmailing.

Other components for instance change how the victim browses the Internet.
Koobface could plant bogus results of searching by serving sites with adds or

7

3 Examples of Botnets

resolving addresses to point to forged websites. Data stealer component contained
keylogger sending captured credentials to C&C.

Interesting component is the Captcha breaker. When Koobface encounters a
captcha, it does not solve it by using some advanced recognition algorithms, but
instead the captcha is presented to the real user with a panic notification and
a timer mimicking a message made by operating system. Input is then send to
C&C.

C&C channel

Architecture of the C&C is quite basic. Koobface started with a centralized
network consisting only infected hosts and C&C domains[9]. After that, the
architecture was updated by adding a layer of infected zombies used as proxies
between victims and C&C. There was only one working C&C server at a time.

Koobface uses HTTP as a protocol for communication. Bot issues GET and
POST requests to servers, which are running a PHP server. C&C responds with
a plain text containing commands and other information. A Bot possess hard-
coded list of domains where C&C should reside. It first check availability by
requesting a file /achcheck.php to which server responses with string ACH_OK. If
the domain is reachable, bot sends a GET request to file gen.php and includes
information about social networks used by the victim as a part of the request.
Then it downloads components selected by C&C.

C&C issues commands also in plain text. Sample orders included text
PERMANENTLIST, STARTONCE or for instance SHARELINK. Bot, sending stolen data
by POST, encrypted information using bitwise-ADD operation. Encryption key
was part of the malware.

Koobface was taken down due to the effort of Facebook researchers. Attackers
evaded shut down by reading articles about Koobface research and their ability
to update botnet.

3.2 Gameover ZeuS
ZeuS is the most popular DIY botnet kit distributed by cybercriminals on un-
derground markets. Botnet was first sighted in 2006. ZeuS is a banking trojan
stealing account numbers and credit card credentials. We will focus on latest
version of ZeuS called Gameover ZeuS (GOZ)[10]. Original ZeuS botnet has cen-
tralized C&C. Its successor GOZ introduces private peer-to-peer architecture.

Controllers of GOZ spread malware by renting a large spamming botnet called
Cutwail. Send emails impersonated known companies, financial institutions or
networking sites and lured victims to click on bogus links. For instance by warn-
ing about an unpaid bill. Link directs the user to a fake loading screen where
a Blackhole exploit kit is downloaded by JavaScript in the background. Black-
hole exploits known security bugs in PDF files, Java applets and Flash plugins.
Vulnerability allows inserting a shell code, which downloads a malware loader.
The loader called Pony then tries to retrieve a proper binary from hard-coded

8

3.2 Gameover ZeuS

compromised web servers. Pony also scans victims system to steal credentials for
transforming victim’s computer to a FTP server, which could further seed mal-
ware binaries. Result of the scan is send using encrypted POST through a proxy
to C&C.

P2P architecture

After launch of the downloaded malware, the bot uses hard-coded list of domains
to contact the C&C. If successful, C&C sends additional binaries, updates and
an actual list of peers. If no domain is reachable, bot uses a domain generation
algorithm, which is seeded by current date. The algorithm produces 1,000 pseudo
random domains per day. The purpose of these is to provide a list of peers in the
network.

Communication is carried over TCP or UDP on random ports between 10,000 to
30,000[11]. Configuration files, binaries with malware and some control messages
are signed by botmasters to avoid poisoning and interfering with the botnet by
disruptors.

Topology of GOZ is divided into three layers. These are C&C Layer, C&C
Proxy Layer and P2P Layer. Workers from P2P Layer does not contact directly
C&C Proxy Layer. Instead, botmasters select some bots as a proxy to communi-
cate with upper layer.

Each bot stores a list of neighbor peers and proxy bots. Proxy bots are an-
nounced by botmaster. Bots manage their lists cleverly. Every time another bot
contacts them, they add it to the list, if it contains less than 50 peers. Bots
test availability of peers every 30 minutes, giving them a few attempts to re-
spond. When lacking peers, they contact the C&C and pull a fresh list. If the
bot is completely isolated, it tries to bootstrap again from the list of hard-coded
addresses, but if it also fails, bot switches to the domain generation algorithm.
When finding reachable domain, it fetches a fresh list of peers, which is digitally
signed to prevent poisoning. Botmasters implemented various strategies to pre-
vent disruption. For instance bots manage blacklist of peers which contacts them
too often. They also won’t add a new peer, if it belongs to the same subnet.
This makes it harder for disruptors to analyze the botnet and isolate bots by
introducing fake bots into the network.

Message structure

Bots usually communicate over UDP, but messages including binary updates or
configuration files are send over TCP. Messages have custom form. Only com-
munication between proxy bots and C&C Proxy Layer seems to be wrapped into
HTTP. Structure of the message is divided into parts as follows:
Random First byte of message is a random value. It’s an error detecting code

used to verify successful encryption of message. Some bots use XOR encryption
algorithm leaving first byte unencrypted. This byte has to match first byte of
Session ID flag described below.

9

3 Examples of Botnets

Time to live Some messages carry number, which is lowered each time a bot
forwards it to other peers. When this number reaches zero, message is not
propagated. This prevents infinite message forwarding through the network.

Length of padding Determines how many bytes are added to the end of the
payload. This is a defense mechanism avoiding signature detection. Messages
therefore have random length.

Type Flag determining purpose of the message. Bots uses several types of mes-
sages including data request, peer list or version request and their corresponding
responses.

Session ID Bot sending a request includes a random session number with a length
of 20 bytes. The response has to reply with the same number or the message is
discarded. This prevents some attacks on the botnet trying to spoof messages.

Source ID Each bot has unique 20 byte length identifier which is calculated upon
infection of victim using a hash algorithm. Bots are able to update their list of
peers and proxies when they are contacted from the same bot from a different
address.

Payload Payload itself conforms the type of the message. Each type has its own
structure. There are inserted padding bytes after payload.
Gameover ZeuS botnet was successfully taken down leaving losses worth mil-

lions of dollars [12]. FBI is offering a reward of up to $3 million for information
leading to arrest one of the criminal involved in GOZ activity.

3.3 Stegobot
Stegobot is a proposed idea of a botnet with a covert C&C channel described in
a research paper [13]. The goal was to create a botnet with a probabilistically
unobservable C&C channel. Botnets transformed from centralized architecture
to decentralized and according to the researchers, the next step of evolution will
be becoming unobservable. For the sake of research, they made botnet that uses
image steganography to hide presence of the C&C channel.

C&C channel

Characteristic of the C&C channel is exploitation of widely used social networks
that allow sharing multimedia content. Using such service brings a benefit of high
resistivity to take down. Social networks form free-scale graphs, which are highly
robust to removal of random nodes.

Communication of a bot is quite unique, because a bot does not actively request
orders and responds to them. Communication is carried by the victim. Every
time he uploads an image, bot adds a payload to it. Similarly, every time the
service shows the user a picture uploaded by his friend, the bot checks it for
included payload.

Selected social network acts as a peer-to-peer overlay over which data are send.
Messages travel along social links of the victim. Bot can receive either a com-
mand from botmaster or a response from another bot. In both cases, it resend the

10

3.3 Stegobot

message to others using restricted flooding algorithm. Each message carry infor-
mation about how many times it was forwarded. Once it reaches the maximum
number of hops, bot does not spread it anymore. The number of hops must be
chosen appropriately to the size of the botnet. High number of hops increases the
chance that botmaster receives the response, but also reduces channel bandwidth,
because of high amount of duplicate messages transferred.

For hiding information into images, algorithm called YASS [14] was selected.
Unlike common used algorithms for steganography, YASS is more resistant to
detection. It embeds data randomly into a JPEG picture while preserving statis-
tical behavior of the image. In can also withstand a second compression carried
by the service to which the picture is uploaded. However, the undetectability is
compensated by the low embedding rate of bits in the image. Also YASS insert
redundant bits for errors made by compression. With balanced robustness and
steganographic capacity an image can hold on average 10,000 bits.

Effectiveness

Testing showed that network consisting of 7200 nodes was capable of reaching up
to 86,13MB of bandwidth per month. 18000 different messages were delivered to
a botmaster. That was achieved with low redundancy of bits in images. Higher
redundancy creates more robust channel, but bandwidth drops significantly. Test-
ing also showed that botmaster received about 10% of stolen information send
from the bots. In conclusion, it is possible to create botnet with unobservable
C&C channel with purpose to steal sensitive data.

11

4 Framework implementation
This chapter will introduce our implementation of a framework for testing C&C
protocols. Our goal was not to create a functional botnet which capabilities that
would be comparable with a real botnets. We wanted to test, whether some
services on the Internet are vulnerable to botnet infection and suitable for botnet
operations.

4.1 C&C channel
The target services we wanted to test were massively used social networks or
commonly used Internet services. We set a requirement, that the service itself
should play a role of C&C server. There are botnets, which abuse social networks
like Facebook1 or Twitter2, but they use them as a medium to spread the infection.
We wanted to delegate the most parts of C&C to the service. This approach has
a certain advantage for the controller of the botnet. Because of the massive usage
of these services, there applies the principle of hiding in plain sight. That means
that the botnet does not have to care so much about hiding its communication.
The communication might get lost in regular traffic produced by a human user.
Since such botnet would use HTTP protocol and regular ports, it is not possible to
disallow these port or even block access to the services. In a network of computers
we might forbid ports used by IRC channels or blacklist servers known to be used
as C&C nodes. Blocking port 443 used for HTTPS or blocking access to certain
services is not viable option because it strongly limits the user.

Establishing a C&C channel between a bot and a service has another char-
acteristic. Unlike IRC traffic, which isn’t encrypted by default, services usually
use HTTPS. The communication is encrypted and one cannot simply eavesdrop
it. Capturing the traffic gives us distinctively less information than capturing a
regular HTTP. We will know destination server and size of the request, but we
won’t know the whole request. Our proposed protocol is considering centralized
topology.

4.2 Design of framework
The CCCBot framework is implemented using Java language. It’s meant to be
extendable and during development there was emphasis on an ability to add a
new functionality by a user of that framework. There are two main components.

1https://www.facebook.com/
2https://www.twitter.com/

13

https://www.facebook.com/
https://www.twitter.com/

4 Framework implementation

Figure 2 General flow of the framework

Former is driver enabling communication with a service. It is represented by java
interface Driver. Driver is capable of retrieving orders from a C&C center and
send responses. The latter is behavior of the bot. Behavior controls frequency of
polling the service, schedules execution of orders and sends reports of their com-
pletion through driver back to the service. In framework is behavior represented
by Behavior interface.

4.2.1 Flow of the framework
Diagram Fig. 2 explains the basic flow of the framework.

1. Initial configuration of bot is read from a configuration file config.txt.
This file contains information about desired behavior of the bot and the
service to which it will be connecting. There might be additional settings
specific to the service, for instance accessing credentials.

2. When behavior decides, it polls the driver for an order.
3. Driver connects to the service and attempt to withdraw an order, if it’s

present.
4. Driver parses order with its parameters using a set protocol and passes it

to the Behavior.
5. Behavior prompts an ActionFactory to get instance of an Action
6. Factory creates an action. This represents a work necessary to complete the

order. The action is passed back to the behavior.
7. Behavior creates a new thread for the action and starts execution of it in

that thread. This execution runs concurrently to the run of communication
with service.

14

4.2 Design of framework

8. Upon completion of execution of the order, the action notifies about it the
behavior.

9. Behavior receives the result of execution and issues a request to the driver
to send a report back to C&C.

10. Driver translates the result according to the protocol and uploads it to the
service. Flow then repeats from the point 2.

4.2.2 List of orders
CCCBot has a fixed set of orders. These orders are instructions which can be
issued by the botmaster. They differ from their input and result. Selection of
orders is not random. We chose following set of orders after studying which ac-
tions botnets usually conduct. An order can be commanded with or without
parameters. The result of an order can be a simple string informing about out-
come of execution or a file. The framework lists all kinds of orders in enum class
OrderType.
BOTNAME Every bot has an identification name assigned to it. The name is

saved in the configuration file. It servers to distinguish recipients of commands
by the botmaster. Order of type BOTNAME simply retrieves the name of the
bot.

SYSINFO This command issues a bot to return some information about the
computer, where the bot resides.

NETINFO Bot collects data about network setup of the victim.
DOWNLOAD This order commands the bot to download a file. The path of the

file is a parameter of the command. With this command, botmaster is able to
push an additional malware to the infected computer.

UPLOAD Bot searches for a file located on the computer and sends it to the
botmaster. The path to the file is passed as a parameter of the order.

SCREENSHOT Bot captures a screenshot of the current screen on victim’s com-
puter and uploads it.

SHUTDOWN Deactivates the bot. The process of the bot will exit.
EXECUTE The most potent command of all. The parameter of the order is a

command line command. The botmaster should know the operating system
on host prior issuing this order. With this command, the botmaster is able to
fully control the victim’s computer. Result of this order is string printed to the
standard output. Since each activity in the framework is run in separate thread,
it is possible to launch a process, which does not terminate immediately. Let’s
say a DoS attack. The bot will continue to listen to new orders.

4.2.3 Configuration file
The initial setup of the bot is specified in the configuration file. The file called
config.cfg contains pairs of keys and values following scheme key:value. These
settings tune the behavior of the bot. Configuration file is loaded on the start.
Some settings could look like this example:

15

4 Framework implementation

driver:SpreadsheetDriver
behavior:RandomBehaviour
random_reaction:20000

The configuration file is useful, when a driver or a behavior needs an additional
information for its run. This setting is then prefixed with a word to match it to
the concrete module. In the example above, the key random_reaction modifies
a waiting time of a chosen behavior. There is a fixed set of keys which are
mandatory to run the framework. These are:
driver name of the driver in form of the case sensitive name of Java class.
behavior name of the behavior according to which the framework will act. It’s

also case sensitive name of behavior class.
botname this setting assigns a name to the bot. Botmaster can then command

orders to a single bot or a group which shares the same name.

4.3 Behaviors
There are two behaviors implemented in the framework. Former is called
FixedTimeBehavior. It simulates a “dumb” bot. The behavior polls service in
precise set periods of time. After fetching a command, the behavior immediately
executes it and responses as fast as possible. This makes actions of the bot very
obvious.

The latter is called RandomBehavior. As the name suggests, the behavior polls
the service randomly to fetch new orders. The response does not immediately
follow the request. Instead, the response after execution of the command is ran-
dom and as well and the time span, in which response could occur, is greater
than polling frequency. By this approach, the response could be send out of a
polling window, in which the command was received. By doing so, we are trying
to break otherwise synchronous communication. As stated in paper about botnet
detection[15], the researches found it difficult to notice a botnet communication
which was asynchronous. In their setup, the botnet used plain HTTP protocol. It
was obvious, what is a request and what is an activity report. In our case, where
we use HTTPS, it may be not so easily distinguishable but it could be guessed.

4.4 Drivers
This section will describe how we implemented each communication protocol for
tested services. We will also study characteristics of services and possibilities of
their misuse.

4.4.1 OAuth
Before further reading, we want the reader to get familiar with a concept of
OAuth. OAuth is a delegation protocol [16] which is often a part of authorization
protocols on large web services. OAuth solves delegation of access to some re-
sources when the user is not present. There are currently two versions of OAuth.

16

4.4 Drivers

Figure 3 OAuth authentication flow

Each specification describes how to proceed in different situations. The point of
this explanation is that in each protocol a real user plays a role and we want to
overcome his presence during authorization. We will describe how we coped with
this problem in following sections about implementations of protocols.

OAuth advocates usage of access tokens and client secrets. The main idea is
that there are pairs of values shared between client and service. Only one value is
send over network at a time to identify a user and the second one called secret is
used to sign that request. By eavesdropping the communication, we get the token
but without knowing the secret, we can’t create legitimate request to a service.

Let’s look at a slightly simplified flow of OAuth authorization[17] in Fig. 3.
The flow differs from version 1.0 and 2.0 but the main idea stays the same. The
real example might look like as follows. An application wants to issue some calls
on an API of a service. It presents itself with a consumer key, which identifies the
application and its permissions. The service sends back an URL to authorize an
user. The application redirects to this URL in a web browser. The real user of
the application logs in and accept that the application will perform actions on his
behalf. After logging in, a numeric code is showed to the user. The user inputs it
into the application. With presenting this code to the service, the application is
authorized and receives the access token. The token is then used in every request
to the service.

17

4 Framework implementation

4.5 Dropbox
Dropbox3 is a free service allowing to store large amount of files on a cloud. More
than fifty million people use Dropbox to share files with each other. Dropbox
targets all kinds of platforms ranging from computers to mobile phones [18].
They encourage programmers to create applications using Dropbox as a data
store. Therefore they offer an API for working with the files saved in Dropbox.

The fact, that there is an opportunity to create applications based on Dropbox
is good, because then we are not so concerned about mimicking behavior of the
real user of service.

4.5.1 Proposed channel
The idea of communication channel is quite obvious. Botmaster creates a file
containing orders. This file is shared among every bot. Botmaster continuously
updates the file with new orders. Bots keep synchronizing this file. For every
command, which requires an answer, they create a file containing response. This
file is uploaded by Dropbox and shared with the botmaster.

Order file should stick to the following structure. Every command is a string
on a separate line. The string matches scheme number:name:order:parameters

∙ number helps the bot to keep track of the last command. The file could
change unpredictably. Every time the bot fetches a new order from the
file, it will look for the first order with a number greater than the last one
executed.

∙ name part determines, if the order is commanded to the bot. Bot will ignore
a command, if the name wouldn’t match bot’s name, string all or empty
string.

∙ order part is the name of issued order.
∙ parameters is a string containing additional information necessary for ex-

ecution of the command. The ;ast part including the semicolon can be
omitted, if the order doesn’t need parameters.

4.5.2 Limitations
The API of Dropbox offers a whole range of actions including synchronizing shared
files or creating and updating new ones. According to developer guides, the API
calls are not strictly limited and regular applications should not exceed these
limits[19]. But code documentation suggests to synchronize files no often than
every five minutes. This could prolong communication between the bot and the
botmaster. On the other hand, the communication should not be so frequent in
order not to draw so much attention.

Prior making some API calls, each application should authenticate itself using
Dropbox implementation of OAuth 2.0. This requires a user interaction. The
user should be redirected to a login page, sign in and allow access to his files as

3https://www.dropbox.com/

18

https://www.dropbox.com/

4.5 Dropbox

Figure 4 Authorization of access by the user

showed on Fig. 4. User receives a code, which should input into the application.
One way to overcome this issue is to set up an auxiliary server collecting URLs
for the authentication. Botmaster would open these pages, signs in and send
back the received code to the bot to complete the authentication. This approach
has two major drawbacks. First, the botmaster would log in from a different
and possibly distant network. Bot making API calls from different place would
definitely be suspicious in the eyes of Dropbox. The latter problem is not huge,
but may matter. By creation of auxiliary server we are breaking the idea that
C&C is part of the service.

There is a Java library called HtmlUnit4 that simulates web browser without
a GUI. We wanted to simulate a behavior of a real user logging into Dropbox
and authenticating the application using that library. But when we inspected the
logging form, we found that there are several Javascript functions attached on
various input events. Their names and bodies were obfuscated but one of them
was named monkey_check() . Monkey tests in computer science are automated
test used for testing software without the user. We can guess, that the function
monkey_check() wants to detect a software impersonating a human. Therefore
HtmlUnit was not an option in this case.

Implementation of the channel utilizes the ability to create an access token
prior authentication. This token should serve only for testing purposes to speed
up the development process of an application. This brings a disadvantage that
only one account can use this token. Therefore, we need a distinct account for
every bot.

The file with orders could be labeled as public, making it accessible without
using the Dropbox API. Unfortunately, public files have a limit of accesses in a
time period. Larger botnet could reach this limit quickly.

Botmaster may not have an option to use hijacked accounts in his botnet.
Changes made in files are showed to the real user by Dropbox application installed

4http://htmlunit.sourceforge.net/

19

http://htmlunit.sourceforge.net/

4 Framework implementation

on victim’s system. The user could very quickly spot malicious activity on his
computer.

4.5.3 Setup
This section will give reader instructions how to use the Dropbox channel in the
framework.

1. User should register an app on developer site of Dropbox5 and give it full
access to Dropbox account.

2. The app should allow setting called Allow implicit grant.
3. User has to generate an access token and create a directory in the root folder

of Dropbox having the same name as the bot
4. User has to include all needed information in configuration file

The list of settings necessary in configuration file is following:
driver The pair should be driver:DropboxDriver
botname Unique name of bot. The bot will save responses to directory with the

same name
dropbox_appkey The value is string labeled as App key on developer site
dropbox_appsecret The value App secret completes the pair with App key
dropbox_apptoken This marks the generated access token
dropbox_sharedfile This is path to the file with orders. The path has to start

with slash and should not use backslashes for delimiting directories.

4.5.4 Summary
Identifying one bot in the network could be dangerous for the whole network, since
each bot shares a file with others. This bot could uncover the whole network of
bots leading to possible shutdown of all of them.

In case of low number of bots in the botnet, we believe Dropbox could be
misused. The channel could last for days. Unfortunately, the channel suffers
from the single point of failure. If Dropbox revokes the access token, forcing
client to authenticate again, the bot has no way to recover.

On the other hand, in case the C&C account is banned and the rest of accounts
are left untouched, the botnet can be rebuild by botmaster simply by creating a
new shared order file with the same name.

4.6 Pastebin
Pastebin is one of the biggest paste tools on the Internet. This service lets a user
to store a text for sharing it with others. It was created mainly for programmers
who needed to share snippets of code with their collaborators.

Pastebin exposes a quite simple API for working with uploaded texts called
pastes. The only requirement for using it is creating an account and obtaining
unique developer API key.

5https://www.dropbox.com/developers/apps

20

https://www.dropbox.com/developers/apps

4.6 Pastebin

4.6.1 Proposed channel
Each paste created on Pastebin has its own unique identifier. Pastes can be made
public or private. The latter is only visible to its creator. Botmaster creates a
private file, which holds orders for the botnet. Each bot will know identifier of
this file and will regularly check it for new orders. After completing the command,
the bot will create a paste containing the response. In case of a non-text file, the
content will be encoded by Base64 encoding scheme. If the file is bigger than 512
kilobytes, it will be split. Because the order file is private, each bot has to be
logged using the same username and password as the botmaster.

The form of the order is the same as proposed in the section about Drop-
box channel. A command contains a number, a name, an order and parameters
separated by semicolon. Each command is on a separate line in the order file.

4.6.2 Limitations
It turns out that Pastebin is quite strict and the implemented channel is very
fragile. Pastebin has various strategies how to fight with spammers. Therefore a
registered user is only allowed to create up to 20 new pastes per 24 hours. Using
a web interface, botmaster can edit the paste containing orders. Unfortunately,
this action is not possible using the Pastebin API and responses has to be placed
in new pastes.

Pastebin prohibits certain content in files. One should not paste sensitive data
like emails, passwords or links. Newly created pastes are inspected for particular
keywords that Pastebin consider suspicious. Therefore we implemented a dictio-
nary for name of orders. For instance, instead of the word execute, the botmaster
should use do or instead shutdown there is equivalent word sleep. When the ser-
vice assumes that it’s abused, it responses with captcha prompt. If the client
does not respond in 10 minutes, the paste is not created.

4.6.3 Setup
To use Pastebin as a communication channel in CCCBot framework, user should
follow these steps

∙ Create an account on Pastebin and get Unique Developer API key6

∙ Create a private paste for orders
∙ Set properly configuration file
Driver requires these properties be found in configuration file

driver Set as driver:PastebinDriver
botname The identification of the bot
pastebin_username Username of botmaster
pastebin_password Botmaster’s password
pastebin_apikey Unique Developer API key

6http://pastebin.com/api

21

http://pastebin.com/api

4 Framework implementation

Figure 5 Pastebin informing about blocking an account

pastebin_orderfile Unique string identifying paste with orders. The string can
be extracted from link to that paste. For example link
http://pastebin.com/4JCuDUxv directs to paste with id |4JCuDUxv

4.6.4 Summary
Pastebin does not offer a good way how to establish a robust C&C channel. The
network of bots could be very small because every bot shares the same account
and there is a strict limit on number of created pastes. Also the size of pastes is
limited.

We observed that Pastebin starts to test client with a captcha very quickly un-
der certain conditions. We polled the order file in fixed time intervals. The orders
were edited by the botmaster several times in a short period of time. Pastebin
requested the bot with captcha several times. Since our framework cannot deal
with captchas, it ignored them. The account was immediately blocked. However
Pastebin showed some sense of humor in the way how he informed us about it.
The screen on Fig. 5 depicts how.

4.7 Twitter
Twitter is huge, well known social network7 with hundreds of millions of users
around the world. The idea of using Twitter as a part of a botnet in some way
is not new [20]. Let’s look at how we managed to establish C&C channel using
Twitter.

7https://twitter.com/

22

https://twitter.com/

4.7 Twitter

4.7.1 Proposed channel
The botmaster controls a Twitter account. Every order is composed into a Tweet.
Bots follow the account of the botmaster and read his Tweets. They extract com-
mand from the Tweet and sends their response using direct message mechanism
to a second botmaster account.

The structure of a command is very similar to the previous cases. The command
consists of a number, the bot name, the order and parameters. There is a single
difference. The whole command is surrounded with double quotes. The rest of
the Tweet could be some random text mimicking real Tweets.

Because each Tweet and direct message is limited by 140 characters, there has
to be an auxiliary server catching uploaded files.

On start of the framework, the bot reads the latest Tweet of the followed
account. Then it will read every new Tweet created afterward.

4.7.2 Limitations
The first obvious limitation is restricted length of messages. We are not able to
compose the whole botnet communication into Twitter. Botnet has to communi-
cate with a side server to upload larger files.

We introduced a random text into commands for hiding the real communi-
cation. This is necessary since Twitter does not allow repeating Tweets. The
unimportant content in the Tweet let us command the same order multiple times.
We chose to respond using direct messages, because then uniqueness of messages
does not matter. Since private messages are unlike the Tweets private, we are not
exposing the whole communication to the public. Bot has to follow the account
on Twitter to which he will send responses.

Twitter, similarly as Dropbox, wants the user be authenticated using their
implementation of OAuth. We can avoid direct login of the user through a web
browser by generating an access token on developer sites of Twitter.

Only a limited number of bots can share the same account so botmaster should
acquire a sufficient amount of them for building the network. Twitter allows
regular accounts to use its API to read various data. But main problem arise
when an user wants to create a data like Tweets or messages. In that case,
Twitter permits these actions only to accounts that were verified by a telephone
number. This may be the greatest obstruction in creation of a botnet solely
communicating through Twitter.

4.7.3 Setup
Using Twitter driver in the framework is similar to other drivers but there are
some additional steps.

∙ Create an account on Twitter, validate account using email and mobile
phone.

∙ Create an app8 with access level read, write and direct messages
8https://apps.twitter.com/

23

https://apps.twitter.com/

4 Framework implementation

∙ Get Consumer Key, Consumer Secret, Access Token and Access Secret
∙ Set properly configuration file
Driver requires these properties be found in configuration file. There are quite

a few of them.
driver Set as driver:TwitterDriver
botname The identification of the bot
twitter_consumerkey Consumer Key
twitter_consumersecret Consumer Secret
twitter_accesstoken Access Token
twitter_accesstokensecret Access Token Secret
twitter_source Identification number of an account which will post orders
twitter_recipient Identification number of an account to which the bot will send

responses
twitter_uploadsite IP adress of side server collecting files
twitter_uploadport port number on which the server will listen

4.7.4 Summary
The channel cannot rely only on Twitter. There has to be a secondary channel
for uploading files. But the main problem is verification of an account by the
telephone number. This may limit the botmaster from creating a huge network
of bots. Otherwise the channel is usable. Of course, it’s not prefect because like
every channel proposed so far it suffers from the single point of failure. Ban of
the account used for C&C or response certainly inhibits the whole botnet.

4.8 Google Spreadsheet
There are many services associated with Google. One of them is a cloud file
storage Google Drive similar to Dropbox. Within the Google Drive, user can
manage various office documents. We were inspired by work that proposed proof
of concept of a communication channel using spreadsheets [2]. We recreated this
concept of channel only with little changes.

4.8.1 Channel design
Botmaster set up a spreadsheet into which he will insert commands. Bots read
this file and for every included command they submit a preset Google Form. They
enclose their response and name in the questionnaire.

Google offers various APIs for working with its services. In recent versions of
API, Google tends to use OAuth for authentication of the user. Luckily, Google
supports an older version of API where the content of the spreadsheet can be
withdrawn in JSON9 format. When the file is made public by enabling setting
called Publish on the web, there is no required authentication to access the data.

9http://www.json.org/

24

http://www.json.org/

4.8 Google Spreadsheet

The response form automatically inserts data into a second spreadsheet. Nat-
urally, Google does not offer an API for programmable submission of the forms.
These actions should be made by a real user. But since the questionnaire is a
quite simple HTML form, we used HtmlUnit library this time. As mentioned
in in section about Dropbox, HtmlUnit simulates a regular web browser. The
form does not observe typing patterns of the user. There are only some scripts
managing access statistics. We could just send plain POST request but because
the automatic submission is not supported, we decided to attempt to imitate a
real user’s behavior.

4.8.2 Limitations
The cells in spreadsheets can hold longer texts but they are not suited for files.
This C&C channel cannot do without an auxiliary server collecting files.

When submitting the form, Google may become suspect that client is a bot. In
that case, the client is presented with a captcha. We try to avoid it by simulating
real behavior.

4.8.3 Setup
CCCBot framework requires doing these steps prior using this C&C channel.

∙ Create an empty spreadsheet. First line of cells should contain these values:
number, name, what, how. These values denote content of cells below. The
protocol is very similar to previous ones. number is for identification of
order, Value name targets group of bots. what describes name of the order
and how is optional cell for parameters of the order.

∙ User should enable publish on the web setting. By doing so a link for sharing
is created.

∙ User has to create a form consisting one short text input for bots name and
one long input for response.

∙ Set properly configuration file
List of parameters in configuration file are

driver Set as driver:SpreadsheetDriver
botname The identification of the bot
spreadsheet_order Identification string of the spreadsheet with orders. The

string can be obtained from generated link.
https://docs.google.com/spreadsheets/d/XXXXXXXXX/. The letters X mark
the place of needed id.

spreadsheet_form The whole link to the Google Form for collecting responses.
spreadsheet_uploadsite IP adress of side server collecting files.
spreadsheet_uploadport port number on which the server will listen.

4.8.4 Summary
Building a C&C channel using Google spreadsheets is quite clever and suitable
because of no need to authenticate the client. The botmaster does not have to

25

4 Framework implementation

care about creating bulk of Google accounts. If the bot had to use an account,
it could be banned leading to decomposition of botnet. This makes the channel
more robust. But the channel is not perfect. We have to use side server for files
again and the is a weak point which potentially breaks the botnet. In case of
deleting spreadsheet with orders by Google, botnet cannot recover.

4.9 Hybrid channel
So far we used only one service for our channel. This section will discuss a design
of a C&C channel utilizing more than one service at a time in order to establish
a scalable and robust channel.

4.9.1 Channel design

The channel will use a different service for sending orders to bots and responding
with results.

Commanding orders

For commanding, we utilized Twitter Streaming API. Twitter offers real time
streams of Tweet data.A client does not have to poll the service. Instead, Twitter
notifies the client every time a Tweet is created. The client can set up a filter
reducing flood of Tweets.

Using the API does not require an account verified by telephone number as we
have seen in the section about Twitter. API is only used for reading the data.
There is however some level of authentication required. Client should register
an app and let Twitter to generate access tokens. Bot then listens of a stream
of Tweets filtered by a set of words sets by the botmaster. Twitter will only
notify user when a Tweet containing all of these words is created. Additionally,
bot knows a magic word which has to be present in order Tweet. This separates
randomly created Tweets by people around the world from the ones containing
an order.

The main advantage of this approach is that commanding account is decoupled
from the network of bots. Botnet does not asks for Tweets from a single account
and shutting down the C&C account does not destroy the whole botnet. Orders
can be issued from a new one as long as the Tweet contains the set keywords and
the magic word. The bot itself should not be banned for abusing or spamming
the service since it uses the API as it was intended. Choosing the right filter, we
can achieve desired frequency of incoming Tweets in order not to create suspicious
traffic in the network. We might also benefit from the fact that creation of the
communication is random and may follow some patterns regarding to the global
activity of Twitter users during the day.

The structure of the order is same as with channel solely using Twitter.

26

4.9 Hybrid channel

Responding to C&C

For responding channel, we chose Google Forms. Sending data to the botmaster
through forms is a viable option because no authentication is required. Since the
orders are issued through Twitter, the bot does not have to poll a spreadsheet file
and possibly create a suspicion from abuse. This could make the channel more
covert. However, this channel still suffers from single point of failure. In case the
Google decides to deny access to the form, the botnet may still execute orders
but can’t communicate back to the C&C.

In paper [21] the authors proposed an idea of using a URL flux in botnet
communication. There are countless of services providing shortening of an URL.
These services found their application for example on Twitter, where messages are
limited by 140 characters. The shortening service takes an URL and generates a
short link, which may look like this: http://bit.ly/1Ip8Msd. This link redirects
the user to the original destination. What we want to use is the fact that a
shortening service TinyURL10 offers custom name of the link for free. Other
similar services may be also free, but generated links are random.

We provided the bot with a simple algorithm generating a link where it would
expect the form for submission of the results.
Obtained link may look like this: http://tinyurl.com/keyword14311. It con-
sists of a keyword selected in advance by the botmaster and a UNIX timestamp
divided by 100,000. This generates an unique link, that is valid for roughly one
day. The botmaster is obligated to register these shortened links pointing to valid
Google Forms.

The keyword could be usable to balancing traffic leading to a single file. Re-
trieving responses from various files distributed on separate accounts makes some
overhead but we can use this principle to enlarge the botnet.

4.9.2 Limitations
Despite using two of our choice services, we still need an auxiliary server for
uploading larger binary files. Choosing right filter for incoming Tweets we won’t
reach rate limits.

4.9.3 Setup
The setup of framework shares configuration of SpreadsheetDriver and
TwitterDriver

∙ Create public spreadsheet with same layout as for SpreadsheetDriver
∙ Create a Twitter app to get pairs of consumer keys and access tokens
∙ Setup a Google Form for responses and generate shortened link following

generation algorithm
∙ Provide configuration file with right properties
List of parameters in configuration file are:

driver Set as driver:CombinedDriver
10http://tinyurl.com/

27

http://tinyurl.com/

4 Framework implementation

botname The identification of the bot
combined_order Identification string of the spreadsheet with orders. The string

can be obtained from generated link.
Example link: https://docs.google.com/spreadsheets/d/XXXXXXXXX/. The
letters X mark the place of needed id.

combined_form The whole link to the Google Form for collecting responses.
combined_consumerkey Consumer Key
combined_consumersecret Consumer Secret
twitter_token Access Token
twitter_secret Access Token Secret
twitter_filter Set of comma separated words serving as filter for incoming Tweets.
twitter_magicword Keyword included in Tweet containing the order.
combined_shortenedurl Keyword used in generation of shortened link to the

Google Form
combined_uploadsite IP address of side server collecting files
combined_uploadport port number on which the server will listen

4.9.4 Summary
By combining two services, we obtained a quite robust channel. By bringing
URL flux and stream of Tweets into account, we ensured that botnet can recover
a from failure. By splitting of getting orders and responding to two services,
we prevented or lowered possibility of denial of access to the service because of
suspicion from abuse. The only downside of the proposed channel is that we
didn’t manage to perform the whole botnet’s C&C communication using solely a
web service. We still need a secondary server collecting uploaded files.

4.10 Comparison of channels
In this section, we analyze the observed advantages and disadvantages of imple-
mented C&C channels. The key properties will be following.
Scalable The ability of channel to withstand large size of botnet and managage

the communication.
Service only The whole C&C communication resides in an Internet service.
Recoverable The botnet should be able to recover from a failure.
Difficult to setup Our evaluation of difficulty of arranging the channel.

Table 1 Comparison of channel properties

Scalable Service only Recoverable Difficult to setup
Dropbox yes yes no yes
Pastebin no yes no no
Twitter yes no no yes
Google Drive yes no no no
Hybrid yes no yes no

28

4.11 Drop off server

From all implemented C&C channels, the hybrid channel stand out from others
because of his good ability to recover from a failure. The communication is split,
so it is more difficult for the service or the observer watching traffic to spot
malicious communication.

Only drawback is the necessity of a secondary server. Therefore the next choice
of an usable channel would be utilizing Dropbox.

4.11 Drop off server
Some implementations of C&C channels could not work without an auxiliary
server collecting files. For the purpose of testing, we created a simple HTTP
server. We found it necessary in case of channels using Twitter, Google spread-
sheets and combination of these. The server only processes multipart POST
requests. The request has to contain only the file. The destination of the request
denote suggested path of the file.

4.12 Extension of framework
The CCCBot framework is meant to be extended. New behaviors of bot and
communication protocols can be added. This is done by implementing appropriate
interfaces. Classes with implementation should be then compiled and placed into
designated folder. When a class is selected in configuration file, framework will
load it on demand.

For creating new behavior of the bot, interface with full name
cz.cvut.fel.timrmare.behavior.Behavior has to be implemented. This in-
terface consists of following methods.

public interface Behavior {

public void run() throws Exception;

public void shutdown();

public void initialize(Driver driver,
ActionFactory actionFactory)

throws InitializationException;

public ExecutionCompletionListener getListener();
}

Method initialize is called automatically by framework. Passed driver serves
for communication with a service and ActionFactory is competent to serve im-
plementations of actions depending on operating system where the bot runs.

In case of new driver, interface cz.cvut.fel.timrmare.driver.Driver has to
be implemented.

29

4 Framework implementation

public interface Driver {

public Order poll() throws IOException;

public void send(Report report) throws IOException;

public void sendFile(FileReport report)throws IOException;

public void initialize() throws InitializationException;

}

Functionality of methods is straightforward and as with Behavior, method initialize
is called by framework.

30

5 Conclusion
In our work, we focused on Command and Control (C&C) channels of botnets.
We summarized possible criminal activities associated with them. We studied,
how bots can be organized in networks. We described the architecture and the
operations of three different botnets. First two were Koobface and Gameover
Zeus. We described their network topologies, strategies and capabilities which
made them powerful to deal damages worth of millions of dollars. Last of the
three was proposal of possible design of a botnet utilizing steganography to hide
its presence in a traffic. This botnet called Stegobot piggybacks on actions of real
users on social networks showing that we might encounter almost undetectable
botnets in near future.

We created a framework for proof of concept implementations of C&C channels.
Our goal was to create protocol of communication, which is carried solely by an
Internet service. We observed that it is possible to create a botnet which almost
entire C&C is a part of a widely used service. Abusing a social network or other
popular web service enables hiding botnet C&C communication in plain sight,
because it may be very similar to real communication made by user using the
same service. By doing so, presence of the botnet is less obvious for an observer
of a network but we have to deal with countermeasures done by owners of service.

We successfully designed a communication protocol of a botnet with central-
ized C&C using combination of Twitter and Google Spreadsheets. This design
minimizes authorization needed to use the services and decouples symmetric com-
munication consisting of commands and bot’s responses. After adding domain
generation algorithm to protocol, we achieved quite robust C&C channel, which
will recover from some failures.

This framework provides valuable source of labeled data. They may be used for
machine learning software designed to scan network traffic without deep packet
inspection.

31

Appendix A

Content of CD
This appendix summarizes the content of the enclosed compact disk. Only top
level directories are listed.

Directory Description

Thesis Contains this thesis in PDF format
CCCBot Source codes of the CCCBot framework
CatchAFile Source codes of auxiliary drop-off server
JavaDoc Generated documentation of code in form of JavaDoc

32

Bibliography
[1] Sérgio SC Silva et al. “Botnets: A survey”. In: Computer Networks 57.2

(2013), pp. 378–403.
[2] OpenSecurity. Xenotix xBOT. 2014. url: http : / / opensecurity . in /

xenotix_xbot/ (visited on 10/14/2014).
[3] Chia Yuan Cho et al. “Inference and Analysis of Formal Models of Botnet

Command and Control Protocols”. In: Proceedings of the 17th ACM Con-
ference on Computer and Communications Security. Chicago, Illinois, USA:
ACM, 2010, pp. 426–439. isbn: 978-1-4503-0245-6.

[4] Jing Liu et al. “Botnet: Classification, Attacks, Detection, Tracing, and
Preventive Measures”. In: EURASIP J. Wirel. Commun. Netw. 2009 (2009),
9:1–9:11. issn: 1687-1472.

[5] Won Kim et al. “On Botnets”. In: Proceedings of the 12th International
Conference on Information Integration and Web-based Applications & Ser-
vices. ACM, 2010, pp. 5–10. isbn: 978-1-4503-0421-4.

[6] Gregory Fedynyshyn, Mooi Choo Chuah, and Gang Tan. “Detection and
Classification of Different Botnet C&C Channels”. In: (2011), pp. 228–242.

[7] Jignesh Vania, Arvind Meniya, and HB Jethva. “A Review on Botnet and
Detection Technique”. In: International Journal of Computer Trends and
Technology 4.1 (2013), pp. 23–29.

[8] Jonell Baltazar, Joey Costoya, and Ryan Flores. “The real face of koobface:
The largest web 2.0 botnet explained”. In: Trend Micro Research 5.9 (2009),
p. 10.

[9] Jonell Baltazar, Joey Costoya, and Ryan Flores. The Heart of KOOBFACE.
2009.

[10] Brett Stone-Gross. The Lifecycle of Peer-to-Peer (Gameover) ZeuS. 2012.
[11] Dennis Andriesse et al. “Highly resilient peer-to-peer botnets are here:

An analysis of Gameover Zeus”. In: Malicious and Unwanted Software:"
The Americas"(MALWARE), 2013 8th International Conference on. IEEE.
2013, pp. 116–123.

[12] Federal Bureau of Investigation. GameOver Zeus Botnet Disrupted. 2014.
url: http://www.fbi.gov/news/stories/2014/june/gameover-zeus-
botnet-disrupted (visited on 05/15/2015).

[13] Shishir Nagaraja et al. “Stegobot: a covert social network botnet”. In: In-
formation Hiding. Springer. 2011, pp. 299–313.

33

http://opensecurity.in/xenotix_xbot/
http://opensecurity.in/xenotix_xbot/
http://www.fbi.gov/news/stories/2014/june/gameover-zeus-botnet-disrupted
http://www.fbi.gov/news/stories/2014/june/gameover-zeus-botnet-disrupted

Bibliography

[14] Kaushal Solanki, Anindya Sarkar, and BS Manjunath. “YASS: Yet another
steganographic scheme that resists blind steganalysis”. In: Information Hid-
ing. Springer. 2007, pp. 16–31.

[15] Guofei Gu, Junjie Zhang, and Wenke Lee. “BotSniffer: Detecting botnet
command and control channels in network traffic”. In: (2008).

[16] User Authentication with OAuth 2.0. url: http://oauth.net/articles/
authentication/ (visited on 03/02/2015).

[17] Internet Engineering Task Force. The OAuth 2.0 Authorization Framework.
2012. url: https://tools.ietf.org/html/rfc6749 (visited on 03/02/2015).

[18] Dropbox. Online statistics fact sheet. 2015. url: https://www.dropbox.
com/static/docs/DropboxFactSheet.pdf (visited on 04/20/2015).

[19] Dropbox. Core API best practices. 2015. url: https://www.dropbox.com/
developers/core/bestpractices (visited on 04/20/2015).

[20] Arbor Networks. Twitter-based Botnet Command Channel. Aug. 13, 2009.
url: http://www.arbornetworks.com/asert/2009/08/twitter-based-
botnet-command-channel/ (visited on 01/15/2015).

[21] Cui Shuai et al. “S-URL Flux: A Novel C&C Protocol for Mobile Botnets”.
In: Communications in Computer and Information Science (2013), pp. 412–
419.

34

http://oauth.net/articles/authentication/
http://oauth.net/articles/authentication/
https://tools.ietf.org/html/rfc6749
https://www.dropbox.com/static/docs/DropboxFactSheet.pdf
https://www.dropbox.com/static/docs/DropboxFactSheet.pdf
https://www.dropbox.com/developers/core/bestpractices
https://www.dropbox.com/developers/core/bestpractices
http://www.arbornetworks.com/asert/2009/08/twitter-based-botnet-command-channel/
http://www.arbornetworks.com/asert/2009/08/twitter-based-botnet-command-channel/

	Introduction
	Motivation

	Botnet structure
	C&C protocol
	Usage
	Spam
	DDoS attacks
	Identity theft and sensitive data stealing
	Click fraud

	Topology
	Centralized
	IRC
	HTTP

	Decentralized
	Peer-to-peer

	Examples of Botnets
	Koobface
	C&C channel

	Gameover ZeuS
	P2P architecture
	Message structure

	Stegobot
	C&C channel
	Effectiveness

	Framework implementation
	C&C channel
	Design of framework
	Flow of the framework
	List of orders
	Configuration file

	Behaviors
	Drivers
	OAuth

	Dropbox
	Proposed channel
	Limitations
	Setup
	Summary

	Pastebin
	Proposed channel
	Limitations
	Setup
	Summary

	Twitter
	Proposed channel
	Limitations
	Setup
	Summary

	Google Spreadsheet
	Channel design
	Limitations
	Setup
	Summary

	Hybrid channel
	Channel design
	Commanding orders
	Responding to C&C

	Limitations
	Setup
	Summary

	Comparison of channels
	Drop off server
	Extension of framework

	Conclusion
	Content of CD
	Bibliography

